[70240413 Statistical Machine Learning, Spring, 2015]

Latent Feature Learning

Jun Zhu

dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent Technology & Systems Tsinghua University

May 19, 2015

Outline

Finite latent feature models
PCA as the particular example
Infinite latent feature models
Indian buffet process

Clustering

Basic idea: each data point belongs to a cluster

Why latent features?

- Many statistical models can be thought of as modeling data in terms of hidden or latent variables.
- Clustering algorithms (e.g. using mixture models) represent data in terms of which cluster each data point belongs to.
- Sut clustering models are restrictive...
- Consider modeling people's movie preferences (the "Netflix" problem). A movie might be described using features such as "is science fiction", "has Charlton Heston", "was made in the US", "was made in 1970s", "has apes in it"... these features may be unobserved (latent).
- The number of potential latent features for describing a movie (or person, news story, image, gene, speech waveform, etc) is unlimited.

Example: Latent Feature/Factors

Characterize both items & users on say 20 to 100 factors inferred from the rating patterns

[Y. Koren, R. Bell & C. Volinsky, IEEE, 2009]

Latent Feature Models are not New ...

- PCA
- ICA

LDA (latent discriminant analysis)

- LSI
- Neural networks
- Topic models

A special case with some constraints (e.g., conservation of belief constraint)

Probabilistic PCA

- A simple linear-Gaussian model
- \diamond Let z be a latent feature vector $\mathbf{z} \in \mathbb{R}^M$
 - In Bayesian, we assume it's prior $\mathbf{z} \sim \mathcal{N}(0, I)$

A linear-Gaussian model

$$\mathbf{x} = W\mathbf{z} + \mu + \epsilon \qquad \epsilon \sim \mathcal{N}(0, \sigma^2 I)$$

• this gives the likelihood

$$p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}|W\mathbf{z} + \mu, \sigma^2 I)$$

• the columns of W span a linear subspace

Bayesian PCA

A prior is assumed on the parameters W

• Inference can be done in closed-form, as in GP regression • Fully Bayesian treatment put priors on μ, σ^2, α

Factor Analysis

♦ Another simple linear-Gaussian model
♦ Let z be a latent feature vector z ∈ ℝ^M
■ In Bayesian, we assume it's prior z ~ N(0, I)
♦ A linear-Gaussian model

$$\mathbf{x} = W\mathbf{z} + \mu + \epsilon \qquad \epsilon \sim \mathcal{N}(0, \Psi)$$

Ψ is a diagonal matrix
this gives the likelihood

 $p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}|W\mathbf{z} + \mu, \Psi)$

• the columns of W span a linear subspace

Model Selection Issue

How to decide the latent dimension?

We will present a non-parametric technique to automatically infer the latent dimension

Latent Feature Models

- Consider N objects, the latent features form a matrix
- \diamond The feature matrix can be decomposed into two components
 - A binary matrix Z indicating which features possessed by each object
 A matrix V indicating the value of each feature for each object

- Sparsity is imposed on the binary matrix Z
- For Bayesian, the prior can be imposed as p(F) = p(Z)p(V)
- We will focus on p(Z), which determines the effective dimensionality of latent features

A random finite binary latent feature model

• π_k is the relative probability of each feature being on, e.g.,

N

i=1

The marginal probability of a binary matrix Z is

$$p(Z) = \prod_{k=1}^{K} \int \left(\prod_{i=1}^{N} p(z_{ik}|\pi_k)\right) p(\pi_k) d\pi_k$$
$$= \prod_{k=1}^{K} \int \left(\prod_{i=1}^{N} \pi_k^{z_{ik}} (1-\pi_k)^{1-z_{ik}}\right) p(\pi_k) d\pi_k$$
$$m_k = \sum_{i=1}^{N} z_{ik} \qquad = \prod_{k=1}^{K} \int \pi_k^{m_k} (1-\pi_k)^{N-m_k} p(\pi_k) d\pi_k$$
$$= \prod_{k=1}^{K} \frac{\frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})} \qquad Features are independent!$$
$$\int_0^1 \pi^{r-1} (1-\pi)^{s-1} d\pi = \frac{\Gamma(r) \Gamma(s)}{\Gamma(r+s)}$$

The conditional probability of each feature assignment

$$p(z_{ik} = 1|Z_{-(i,k)}) = p(z_{ik} = 1|\mathbf{z}_{-(i,k)}) = \frac{p(z_{ik} = 1, \mathbf{z}_{-(i,k)})}{p(\mathbf{z}_{-(i,k)})}$$

$$p(z_{ik} = 1, \mathbf{z}_{-(i,k)}) = \frac{\Gamma\left((m_{-(i,k)} + 1) + \frac{\alpha}{K}\right)\Gamma\left(N - (m_{-(i,k)} + 1) + 1\right)}{\Gamma(N + \frac{\alpha}{K} + 1)}$$

$$p(\mathbf{z}_{-(i,k)}) = \frac{\Gamma(m_{-(i,k)} + \frac{\alpha}{K})\Gamma\left((N - 1) - m_{-(i,k)+1}\right)}{\Gamma\left((N - 1) + \frac{\alpha}{K} + 1\right)}$$

$$p(z_{ik} = 1|Z_{-(i,k)}) = \frac{m_{-(i,k)} + \frac{\alpha}{K}}{N + \frac{\alpha}{N}}$$

$$p(\mathbf{z}_{k}) = \frac{\frac{\alpha}{K}\Gamma(m_{k} + \frac{\alpha}{K})\Gamma(N - m_{k} + 1)}{\Gamma(N + 1 + \alpha)}$$

$$T(N + 1 + \frac{\alpha}{K})$$
$$m_k = \sum_{i=1}^N z_{ik} \qquad \Gamma(x+1) = x\Gamma(x)$$

Expectation of the number of non-zero features

$$\mathbb{E}[1^{\top}Z1] = \mathbb{E}\Big[\sum_{ik} z_{ik}\Big] = K\mathbb{E}[1^{\top}\mathbf{z}_k]$$

the last equality is due to the independence of the features
For feature k, we have

$$\mathbb{E}[1^{\top}\mathbf{z}_k] = \sum_{i=1}^N \mathbb{E}[z_{ik}] = \sum_{i=1}^N \int_0^1 \pi_k p(\pi_k) d\pi_k = N \frac{\frac{\alpha}{K}}{1 + \frac{\alpha}{K}}$$

• The last equality is due to the fact that expectation of Beta(r, s) is $\frac{r}{r+s}$

• Thus,
$$\mathbb{E}[1^{\top}Z1] = \frac{N\alpha}{1 + \frac{\alpha}{K}} < N\alpha$$

From Finite to Infinite

$$\lim_{K \to \infty} p(Z|\alpha) = 0$$

 However, if we consider equivalence classes of matrices in left-ordered form obtained by reordering the columns:

A **many to one** mapping! Order the columns from left to right by the magnitude of the binary numbers expressed by that column, taking the first row as the most significant bit.

From Finite to Infinite

A technical difficulty: the probability for any particular matrix goes to zero as $K \to \infty$

$$\lim_{K \to \infty} p(Z|\alpha) = 0$$

However, if we consider equivalence classes of matrices in left-ordered form obtained by reordering the columns:

$$\lim_{K \to \infty} p([Z]|\alpha) = \exp\{-\alpha H_N\} \frac{\alpha^{K_+}}{\prod_{h>0} K_h!} \prod_{k \le K_+} \frac{(N - m_k)!(m_k - 1)!}{N!}$$

K₊ is the number of features assigned (i.e. non-zero columns).
 H_N = ∑_{n=1}^N 1/n is the Nth harmonic number.
 K_h are the number of features with history h (a technicality).

Indian Buffet Process

- A stochastic process on infinite binary feature matrices
- Generative procedure:
 - Customer 1 chooses the first K_1 dishes: $K_1 \sim \text{Poisson}(\alpha)$
 - Customer *i* chooses:
 - Each of the existing dishes with probability $\frac{m_k}{i}$

•
$$K_i$$
 additional dishes, where $K_i \sim \text{Poisson}(\frac{\alpha}{i})$

 $Z_{i.} \sim \mathcal{IBP}(\alpha)$

Indian Buffet Process

A stochastic process on infinite binary feature matrices
 Stick-breaking construction: Z_i ~ *IBP*(α)

$\prod_{j=1}^{i-1} v_j$	v_i	π_i	
0	0.8	0.8	
0.8	0.5	0.4	
0.4	0.4	0.16	

Inference by Gibbs Sampling

♦ In the finite Beta-Bernoulli model, we have

$$p(z_{ik} = 1 | Z_{-(i,k)}) = \frac{m_{-(i,k)} + \frac{\alpha}{K}}{N + \frac{\alpha}{N}}$$

 \clubsuit Set limit $K \to \infty$, we have the conditional for infinite model

$$p(z_{ik} = 1 | Z_{-(i,k)}) = \frac{m_{-(i,k)}}{N}$$

• for any k such that $m_{-(i,k)} > 0$

• The number of new features should be drawn from

$$\operatorname{Poisson}\left(\frac{\alpha}{K}\right)$$

Use with Data

A linear-Gaussian model with binary features

• Gaussian likelihood $p(X|Z, A, \sigma_X) = \mathcal{N}(ZA, \sigma_X^2 I)$

• Gaussian prior $p(A|\sigma_A) = \mathcal{N}(0, \sigma_A^2 I)$

Inference with Gibbs Sampling

The posterior is

 $p(Z, A|X, \alpha) \propto p(X|Z)p(Z|\alpha)$

The conditional for each feature assignment

$$p(z_{nk} = 1 | Z_{-(n,k)}, X, \alpha) \propto p(z_{nk} = 1 | Z_{-(n,k)}, \alpha) p(X | Z)$$

• If
$$m_{-(i,k)} > 0$$
, $p(z_{ik} = 1 | Z_{-(i,k)}) = \frac{m_{-(i,k)}}{N}$

- For infinitely many k such that m_{-(i,k)} = 0 : Metropolis steps with truncation to sample from the number of new features for each object
- \bullet For linear-Gaussian model, p(X|Z) can be computed

Other Issues

- Sampling methods for non-conjugate models
- ♦ Variational inference with the stick-breaking representation of IBP $z_{nk} \sim \text{Bernoulli}(\pi_k)_i$

$$\pi_i(\mathbf{v}) = v_i \pi_{i-1}(\mathbf{v}) = \prod_{j=1}^i v_j$$

 $v_i \sim \operatorname{Beta}(\alpha, 1)$

Applications to various types of data
Graph structures, overlapping clusters, time series models

Applications of IBP

Discriminative Bayesian Learning

• Regularized Bayesian inference:

A paradigm to perform Bayesian inference with rich posterior regularization:

Ways to Derive Posterior Regularization

From learning objectives

- Performance of posterior distribution can be evaluated when applying it to a learning task
- Learning objective can be formulated as Pos. Reg.

From domain knowledge (ongoing & future work)

- Elicit expert knowledge
- E.g., logic rules

Others ... (ongoing & future work) E.g., decision making, cognitive constraints, etc.

PAC-Bayesian Theory

- Basic Setup:
 - Binary classification: $\mathbf{x} \in \mathbb{R}^d$ $y \in \mathcal{Y} = \{-1, +1\}$
 - Unknown, true data distribution: $(\mathbf{x}, y) \sim D$
 - Hypothesis space: ${\cal H}$
 - Risk, & Empirical Risk:

$$R(h) = \mathbb{E}_{(\mathbf{x},y)\sim D}I(h(\mathbf{x})\neq y) \quad R_S(h) = \frac{1}{N}\sum_{n=1}^N I(h(\mathbf{x}_i)\neq y_i)$$

λT

Learn a posterior distribution Q
Bayes/majority-vote classifier:

$$B_Q(\mathbf{x}) = \operatorname{sgn}\left[\mathbb{E}_{h \sim Q} h(\mathbf{x})\right]$$

Gibbs classifier

• sample an $h \sim Q$, perform prediction

 $R(G_Q) = \mathbb{E}_{h \sim Q} R(h) \quad R_S(G_Q) = \mathbb{E}_{h \sim Q} R_S(h)$

PAC-Bayes Theory

Theorem (Germain et al., 2009):

• for any distribution D; for any set \mathcal{H} of classifiers, for any prior P, for any convex function

 $\phi: \ [0,1] \times [0,1] \to \mathbb{R}$

• for any posterior Q , for any $\delta \in (0,1]$, the following inequality holds with a high probability ($\geq 1-\delta$)

$$\phi\left(R_S(G_Q), R(G_Q)\right) \leq \frac{1}{N} \left[\operatorname{KL}(Q \| P) + \ln\left(\frac{C(N)}{\delta}\right)\right]$$

• where $C(N) = \mathbb{E}_{S \sim D^N} \mathbb{E}_{h \sim P} \left[e^{N\phi(R_S(h), R(h))}\right]$

RegBayes Classifiers

PAC-Bayes theory

$$\phi(R_S(G_Q), R(G_Q)) \le \frac{1}{N} \left[\operatorname{KL}(Q \| P) + \ln\left(\frac{C(N)}{\delta}\right) \right]$$

RegBayes inference

$$\min_{q(\mathcal{H})} \quad \text{KL}(q(\mathcal{H}) \| p(\mathcal{H} | \mathbf{x})) + \Omega(q(\mathcal{H}))$$

s.t.: $q(\mathcal{H}) \in \mathcal{P}_{\text{prob}},$

Observations:

 when the posterior regularization equals to (or upper bounds) the empirical risk

 $\Omega(q(\mathcal{H})) \ge R_S(G_q)$

• the RegBayes classifiers tend to have PAC-Bayes guarantees.

RegBayes with Max-margin Posterior Regularization

Infinite SVMs (Zhu, Chen & Xing, ICML'11)

Infinite Latent SVMs (Zhu, Chen & Xing, NIPS'11; Zhu, Chen, & Xing, JMLR'14)

Nonparametric Max-margin Relational Models for Social Link Prediction (Zhu, ICML'12)

Max-margin Topics and Fast Inference

(Zhu, Ahmed & Xing, JMLR'12; Jiang, Zhu, Sun & Xing, NIPS'12; Zhu, Chen, Perkins & Zhang, ICML'13; Zhu, Chen, Perkins & Zhang, JMLR'14)

Nonparametric Max-margin Matrix Factorization (Xu, Zhu, & Zhang, NIPS'12; Xu, Zhu, & Zhang, ICML'13)

Multimodal Representation Learning (Chen, Zhu & Xing, NIPS'10, Chen, Zhu, Sun & Xing, PAMI'12; Chen, Zhu, Sun, & Zhang, TNNLS'13)

Bayesian Latent Feature Models (finite)

A finite Beta-Bernoulli latent feature model

π_k is the relative probability of each feature being on
 z_i are binary vectors, giving the latent structure that's used to generate the data, e.g.,

 $\mathbf{x}_i \sim \mathcal{N}(\eta^{\top} z_{i.}, \delta^2)$

Indian Buffet Process

A stochastic process on infinite binary feature matrices

- Generative procedure:
 - Customer 1 chooses the first K_1 dishes: $K_1 \sim \text{Poisson}(\alpha)$
 - Customer *i* chooses:

• Each of the existing dishes with probability $\frac{m_k}{i}$

•
$$K_i$$
 additional dishes, where $K_i \sim \text{Poisson}(\frac{\alpha}{i})$

cust 1: new dishes 1-3

cust 2: old dishes 1,3; new dishes 4-5

cust 3: old dishes 2,5; new dishes 6-8

 $Z \sim \mathcal{IBP}(\alpha)$

(Griffiths & Ghahramani, 2005)

Posterior Constraints – classification

Suppose latent features z are given, we define *latent discriminant function*:

$$f(\mathbf{x}; \mathbf{z}, \boldsymbol{\eta}) = \boldsymbol{\eta}^{ op} \mathbf{z}$$

Define *effective discriminant function* (reduce uncertainty):

$$f(\mathbf{x}; q(\mathbf{Z}, \boldsymbol{\eta})) = \mathbb{E}_{q(\mathbf{Z}, \boldsymbol{\eta})}[f(\mathbf{x}, \mathbf{z}; \boldsymbol{\eta})] = \mathbb{E}_{q(\mathbf{Z}, \boldsymbol{\eta})}[\boldsymbol{\eta}^{\top} \mathbf{z}]$$

Posterior constraints with max-margin principle

$$\forall n \in \mathcal{I}_{\mathrm{tr}} : y_n f(\mathbf{x}_n; q(\mathbf{Z}, \boldsymbol{\eta})) \ge 1 - \xi_n$$

 \diamond Convex *U* function

$$U(\xi) = C \sum_{n \in \mathcal{I}_{\mathrm{tr}}} \xi_n$$

The RegBayes Problem

 $\min_{q(\mathbf{Z},\mathbf{W},\boldsymbol{\eta})} \ \mathcal{L}(q(\mathbf{Z},\mathbf{W},\boldsymbol{\eta}) + 2c \cdot \mathcal{R}(q(\mathbf{Z},\mathbf{W},\boldsymbol{\eta})))$

where L(q) = KL(q ||π(Z, W, η)) - E_q[log p(x|Z, W)]
the hinge loss (posterior regularization) is

$$\mathcal{R}(q) = \sum_{n} \max(0, 1 - y_n f(\mathbf{x}_n; q(\mathbf{Z}, \boldsymbol{\eta})))$$

Truncated Variational Inference

- Depends on a stick-breaking representation of IBP (Teh et al., 2007)
- **•** Truncated mean-field inference with an upper bound of features
- Works reasonably well in practice

Posterior Regularization with a Gibbs Classifier

Posterior distribution to learn

 $q(\mathbf{Z}, \boldsymbol{\eta})$

Gibbs classifier randomly draws a sample to make prediction

 $(\mathbf{Z}, \boldsymbol{\eta}) \sim q(\mathbf{Z}, \boldsymbol{\eta})$

lacksquare For classification, we measure the loss of classifier $(\mathbf{Z}, oldsymbol{\eta})$

$$\mathcal{R}(\mathbf{Z},\boldsymbol{\eta}) = \sum_{n} \max(0, 1 - y_n f(\mathbf{x}_n; \mathbf{Z}, \boldsymbol{\eta}))$$

It minimizes the expected loss

$$\mathcal{R}'(q) = \mathbb{E}_q \left[\sum_n \max(0, 1 - y_n f(\mathbf{x}_n; \mathbf{Z}, \boldsymbol{\eta}) \right]$$

Comparison

Expected hinge-loss is an upper bound

 $\mathcal{R}'(q) \ge \mathcal{R}(q)$

For averaging classifier, the RegBayes problem is suitable for variational inference with truncation (Zhu et al., arXiv, 2013)

 For Gibbs classifier, the RegBayes problem is suitable for MCMC without truncation

Multi-task Learning (MTL)

[Wikipedia] MTL is an approach to machine learning that learns a problem together with other related problems, using a *shared representation*

Figure from Wikipedia Author: Kilian Weinberger

- The goal of MTL is to improve the performance of learning algorithms by learning classifiers for multiple tasks jointly
- It works particularly well if these tasks have some commonality and are generally slightly under sampled

Multi-task Representation Learning

Assumption:

- common underlying representation across tasks
- Representative works:
 - ASO (alternating structure optimization): learn a small set of shared features across tasks [Ando & Zhang, 2005]
 - Convex feature learning via sparse norms [Argyriou et al., 2006]

Basic Setup of the Learning Paradigm

♦ Tasks: $m = 1, \dots, M$ ♦ N examples per task (\mathbf{x}_{m1}, y_{m1}), \dots , (\mathbf{x}_{mN}, y_{mN}) $\in \mathbb{R}^D \times \mathbb{R}$ ♦ Estimate $f_m : \mathbb{R}^D \to \mathbb{R}, \ \forall m = 1, \dots, M$ ♦ Consider features

$$h_1(\mathbf{x}), \ \cdots, h_K(\mathbf{x})$$

Predict using functions

$$f_m(\mathbf{x}) = \sum_{k=1}^K \eta_{mk} h_k(\mathbf{x})$$

Learning a Projection Matrix

• Tasks: $m = 1, \cdots, M$ *N* examples per task $(\mathbf{x}_{m1}, y_{m1}), \cdots, (\mathbf{x}_{mN}, y_{mN}) \in \mathbb{R}^D \times \mathbb{R}$ Estimate $f_m: \mathbb{R}^D \to \mathbb{R}, \ \forall m = 1, \cdots, M$ Consider features $h_k(\mathbf{x}) = \mathbf{z}_k^\top \mathbf{x}, \ k = 1, \cdots, \infty$ \bullet Predict using functions (**Z** is a $D \times \infty$ projection matrix)

$$f_m(\mathbf{x}; \mathbf{Z}, \boldsymbol{\eta}) = \sum_{k=1}^{\infty} \eta_{mk}(\mathbf{z}_k^{\top} \mathbf{x}) = \boldsymbol{\eta}_m^{\top}(\mathbf{Z}^{\top} \mathbf{x})$$

Max-margin Posterior Regularizations

Similar as in infinite latent SVMs

Averaging classifier

$$y_{mn}\mathbb{E}_q[f_m(\mathbf{x}_{mn}; \mathbf{Z}, \boldsymbol{\eta})] \ge 1 - \xi_{mn}$$

• The hinge loss

$$\mathcal{R} = \sum_{m,n \in \mathcal{I}_{tr}^m} \max\left(0, 1 - y_{mn} \mathbb{E}_q[f_m(\mathbf{x}_{mn}; \mathbf{Z}\boldsymbol{\eta})]\right)$$

Gibbs classifier

$$\mathcal{R}' = \mathbb{E}_{q} \left[\sum_{m,n \in \mathcal{I}_{tr}^{m}} \max\left(0, 1 - y_{mn} f_{m}(\mathbf{x}_{mn}; \mathbf{Z}\boldsymbol{\eta})\right) \right]$$

Experimental Results

- Multi-label Classification (multiple binary classification)
 - Accuracy and F1 scores (Micro & Macro) on Yeast and Scene datasets

Model	Acc	F1-Macro	F1-Micro
YaXue [Xue et al., 2007]	0.5106	0.3897	0.4022
Piyushrai [Piyushrai et al., 2010]	0.5424	0.3946	0.4112
MT-iLSVM	0.5792 ± 0.003	0.4258 ± 0.005	0.4742 ± 0.008
Gibbs MT-iLSVM	0.5851 ± 0.005	0.4294 ± 0.005	0.4763 ± 0.006

Model	Acc	F1-Macro	F1-Micro
YaXue [Xue et al., 2007]	0.7765	0.2669	0.2816
Piyushrai [Piyushrai et al., 2010]	0.7911	0.3214	0.3226
MT-iLSVM	0.8752 ± 0.004	0.5834 ± 0.026	0.6148 ± 0.020
Gibbs MT-iLSVM	0.8855 ± 0.004	0.6494 ± 0.011	0.6458 ± 0.011

Experimental Results

- Multi-task Regression
 - School dataset (139 regression tasks) a standard dataset for evaluating multi-task learning
 - Percentage of *explained variance* (higher, better)

Link Prediction

Network structures are usually unclear, unobserved, or corrupted with noise

Link prediction – task

Oynamic networks

Static networks

We treat it as a supervised learning task with 1/-1 labels

Link Prediction as Supervised Learning

- Suilding classifiers with manually extracted features from networks
 - Topological features
 - Shortest distance, number of common neighbors, Jaccard's coefficient, etc.
 - Attributes about individual entities
 - E.g., the papers an authors has published
 - * an aggregation function is needed to combine attributes for each pair
 - Proximity features
 - E.g., two authors are close, if their research work evolves around a large set of identical keywords

Discriminant Function with Latent Features

 $f(Z_i, Z_j; X_{ij}, W, \eta) = Z_i W Z_j^{\top}$

Two Key Issues

N entities \rightarrow a latent feature matrix Z

♦ How many columns (i.e., features) are sufficient?
 → a stochastic process to infer it from data
 ♦ What learning principle is good?
 → large-margin principle to learn classifiers

Max-Margin Nonparametric Latent Feature Models for Link Prediction.

[Zhu, ICML 2012]

Some Results

- AUC area under ROC curve (higher, better)
- Two evaluation settings
 - Single learn separate models for different relations, and average the AUC scores;
 - Global learn one common model (i.e., features) for all relations

Collaborative Filtering in Our Life

Latent Factor Methods

Characterize both items & users on say 20 to 100 factors inferred from the rating patterns

[Y. Koren, R. Bell & C. Volinsky, IEEE, 2009]

Matrix Factorization

Some of the most successful latent factor models are based on matrix factorization

Two Key Issues

♦ How many columns (i.e., features) are sufficient?
 → a stochastic process to infer it from data
 ♦ What learning principle is good?
 → large-margin principle to learn classifiers
 Nonparametric Max-margin Matrix Factorization for Collaborative Prediction

[Xu, Zhu, & Zhang, NIPS 2012]

Experiments

♦ Data sets:

- MovieLens: 1M anonymous ratings of 3,952 movies made by 6,040 users
- **EachMovie**: 2.8M ratings of 1,628 movies made by 72,916 users
- Overall results on Normalized Mean Absolute Error (NMAE) (the lower, the better)

Table 1: NMAE performance of different models on MovieLens and EachMovie.

	MovieLens		EachMovie	
Algorithm	weak	strong	weak	strong
$M^{3}F[11]$	$.4156 \pm .0037$	$.4203 \pm .0138$	$.4397 \pm .0006$	$.4341 \pm .0025$
PMF [13]	$.4332 \pm .0033$	$.4413 \pm .0074$	$.4466 \pm .0016$	$.4579 \pm .0016$
BPMF [12]	$.4235 \pm .0023$	$.4450 \pm .0085$	$.4352 \pm .0014$	$.4445 \pm .0005$
M^3F^*	$.4176 \pm .0016$	$.4227 \pm .0072$	$.4348 \pm .0023$	$.4301 \pm .0034$
iPM ³ F	$.4031 \pm .0030$	$.4135 \pm .0109$	$.4211 \pm .0019$	$.4224 \pm .0051$
iBPM ³ F	$.4050 \pm .0029$	$.4089 \pm .0146$	$.4268 \pm .0029$	$.4403 \pm .0040$

Expected Number of Features per User

Fast Sampling Algorithms

See our paper [Xu, Zhu, & Zhang, ICML2013] for details

	MovieLens		EachMovie	
Algorithm	weak	strong	weak	strong
$M^{3}F$	$.4156 \pm .0037$	$.4203 \pm .0138$	$.4397 \pm .0006$	$.4341 \pm .0025$
bcd M^3F	$.4176 \pm .0016$	$.4227 \pm .0072$	$.4348 \pm .0023$	$.4301 \pm .0034$
Gibbs M^3F	$.4037 \pm .0005$	$.4040 \pm .0055$	$.4134 \pm .0017$	$.4142\pm.0059$
iPM ³ F	$.4031 \pm .0030$	$.4135 \pm .0109$	$.4211 \pm .0019$	$.4224 \pm .0051$
Gibbs $iPM^{3}F$	$.4080 \pm .0013$	$.4201 \pm .0053$	$.4220 \pm .0003$	$.4331 \pm .0057$

Algorithm	MovieLens	EachMovie	Iters
$M^{3}F$	$5\mathrm{h}$	15h	100
bcd M^3F	4h	$10\mathrm{h}$	50
Gibbs M^3F	$0.11\mathrm{h}$	$0.35\mathrm{h}$	50
iPM ³ F	4.6h	$5.5\mathrm{h}$	50
Gibbs iPM ³ F	0.68h	$0.70\mathrm{h}$	50

30 times faster!

8 times faster!

Prediction Performance during Iterations

Objective Value during Iterations

Markov IBP and Time Series

Figure 1: The Hidden Markov Model

Figure 2: The Factorial Hidden Markov Model

Big Picture

References

- Chap. 13 of Pattern Recognition and Machine Learning, Bishop, 2006
- Probabilistic Principal Component Analysis. M. Tipping, C. Bishop, 1999.
- Infinite Latent Feature Models and the Indian Buffet Process. T. Griffiths,
 Z. Ghahramani, 2005.
- The Indian Buffet Process: Scalable Inference and Extensions. Finale Doshi-Velez, 2009.
- Max-margin Nonparametric Latent Feature Models for Link Prediction.
 J. Zhu, 2012
- Infinite Latent SVMs for Classification and Multi-task Learning, J. Zhu, N. Chen, & E. Xing, 2011
- Bayesian Inference with Posterior Regularizations and its Applications to Infinite Latent SVMs. J. Zhu, N. Chen, & E. Xing, 2014